1.求进制类方面的知识..
1、二进制数、八进制数、十六进制数转十进制数
有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。个位,N=1;十位,N=2。举例:
110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D
110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D
110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D
2、十进制数转二进制数、八进制数、十六进制数
方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。
例:见四级指导16页。
3、二进制数转换成其它数据类型
3-1二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,
就是一个相应八进制数的表示。
010110.001100B=26.14Q
八进制转二进制反之则可。
3-2二进制转十进制:见1
3-3二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,
不足四位的用0补足,就是一个相应十六进制数的表示。
00100110.00010100B=26.14H
十进制转各进制
要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。
一、十进制转二进制
如:55转为二进制
2|55
27――1 个位
13――1 第二位
6――1 第三位
3――0 第四位
1――1 第五位
最后被除数1为第七位,即得110111
二、十进制转八进制
如:5621转为八进制
8|5621
702 ―― 5 第一位(个位)
87 ―― 6 第二位
10 ―― 7 第三位
1 ―― 2 第四位
最后得八进制数:127658
三、十进制数十六进制
如:76521转为十六进制
16|76521
4726 ――5 第一位(个位)
295 ――6 第二位
18 ――6 第三位
1 ―― 2 第四位
最后得1276516
二进制与十六进制的关系
2进制 0000 0001 0010 0011 0100 0101 0110 0111
16进制 0 1 2 3 4 5 6 7
2进制 1000 1001 1010 1011 1100 1101 1110 1111
16进制 8 9 a(10) b(11) c(12) d(13) e(14) f(15)
可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:
3为0011,A 为1010,合并起来为00111010。可以将最左边的0去掉得1110102
右要将二进制转为16进制,只需将二进制的位数由右向左每四位一个单位分隔,将各单位对照出16进制的值即可。
二进制与八进制间的关系
二进制 000 001 010 011 100 101 110 111
八进制 0 1 2 3 4 5 6 7
二进制与八进制的关系类似于二进制与十六进制的关系,以八进制的各数为0到7,以三位二进制数来表示。如要将51028 转为二进制,5为101,1为001,0为000,2为010,将这些数的二进制合并后为1010010000102,即是二进制的值。
若要将二进制转为八进制,将二进制的位数由右向左每三位一个单位分隔,将事单位对照出八进制的值即可。
参考资料:
2.进制的由来和关于二进制的知识
比如我们最常用的10进制,其实起源于人有10个指头。
如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。
生活中还有:七进制,比如星期。十六进制,比如小时或“一打”,六十进制,比如分钟或角度……了解一些进制知识!一)、数制计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。
一般计数都采用进位计数,其特点是:(1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。(2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。
在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和18 4 2 1二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。
有四进制十进制:有10个基数:0 ~~ 9 ,逢十进一二进制:有2 个基数:0 ~~ 1 ,逢二进一八进制:有8个基数:0 ~~ 7 ,逢八进一十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一1、数的进位记数法N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p02、十进制数与P进制数之间的转换①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。
将(30)10转换成二进制数2| 30 ….0 ----最右位2 15 ….12 7 ….12 3 ….11 ….1 ----最左位∴ (30)10=(11110)2将(30)10转换成八、十六进制数8| 30 ……6 ------最右位3 ------最左位∴ (30)10 =(36)8 16| 30 …14(E)----最右位1 ----最左位∴ (30)10 =(1E)163、将P进制数转换为十进制数把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。把二进制11110转换为十进制(11110)2=1*24+1*23+1*22+1*21+0*20==16+8+4+2+0=(30)10把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。
把八进制36转换为十进制(36)8=3*81+6*80=24+6=(30)10把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。把十六制1E转换为十进制(1E)16=1*161+14*160=16+14=(30)103、二进制转换成八进制数(1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。
例如:将二进制数1101001转换成八进制数,则(001 101 001)2| | |( 1 5 1)8( 1101001)2=(151)8(2)八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则(6 4 3 . 5 0 3)8| | | | | |(110 100 011 . 101 000 011)2(643.503)8=(110100011.101000011)24、二进制与十六进制之间的转换(1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。(2)十六进制转换成二进制数如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。
例如:将(163.5B)16转换成二进制数,则( 1 6 3 . 5 B )16| | | | |(0001 0110 0011. 0101 1011 )2(163.5B)16=(101100011.01011011)2。
3.关于计算机二进制的知识
计算机用二进制的原因:技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。 易于进行转换,二进制与十进制数易于互相转换。用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的干扰时,仍能可靠地分辨出它是高还是低。
另外那个 你说的是bmp格式? 直接把后缀改了就行了 如果改了还不是 说明你计算机不识别这类文件 是因为少装程序了
转载请注明出处生活百科网 » 进制的有关知识(求进制类方面的知识..)